

Sirindhorn International Institute of Technology Thammasat University at Rangsit

School of Information, Computer and Communication Technology

ECS 203: Problem Set 8

Semester/Year: 2/2014

Course Title: Basic Electrical Engineering

Instructor: Asst. Prof. Dr. Prapun Suksompong (prapun@siit.tu.ac.th)

Course Web Site: http://www2.siit.tu.ac.th/prapun/ecs203/

Due date: March 27

Questions

1) [Alexander and Sadiku, 2009, Q5.41] An averaging amplifier is a summing amplifier that provides an output equal to the average of the inputs. By using proper input and feedback resistor values, one can get

$$-v_o = \frac{1}{4} \left(v_1 + v_2 + v_3 + v_4 \right)$$

Using a feedback resistor of 10 k Ω , **design** an averaging amplifier with four inputs.

2) [Alexander and Sadiku, 2009, Q5.47] The circuit in Figure 1 is for a difference amplifier. Find v_0 given that $v_1 = 1V$ and $v_2 = 2V$

Figure 1

3) [Alexander and Sadiku, 2009, Q5.29] Determine the voltage gain v_o/v_i of the op amp circuit in Figure 2.

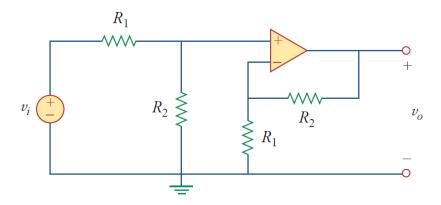


Figure 2

- 4) Use superposition theorem to derive the relation $v_o = -Av_1 + \frac{1+A}{1+B}v_2$ for the difference amplifier on page 70 of the lecture note.
- 5) [Alexander and Sadiku, 2009, Q5.57] Find v_0 in the op amp circuit of Figure 3.

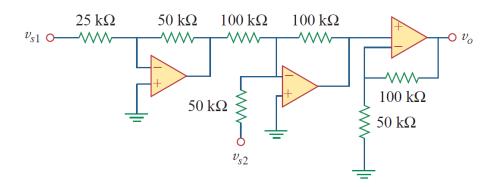


Figure 3

- 6) [Alexander and Sadiku, 2009, Q5.49] Design a circuit to amplify the difference between two inputs by 2.
 - a) Use only one op amp.
 - b) Use exactly two op amps.